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STRUCTURE OF GENETIC ALGEBRAS.* 

By R. D. SCHAFER. 

I. M. H. Etherington has studied the non-associative algebras which 
arise in the symbolism of genetics (references [5] through [10]). In these 
he defines a class of algebras called train algebras, and proves in [7] that this 
class includes algebras called special train algebras which are defined by their 
structure rather than by any type of recurrence equation. 

From the algebraic point of view the concept of train algebra appears 
to be too inclusive, in that an analysis of the structure of train algebras 
seems feasible only when the rank of the algebra is small. However, from the 
point of view of genetics the concept of special train algebra is certainly too 
narrow. For, although the gametic algebras for the fundamental types of 
symmetrical inheritance are special train algebras, the corresponding zygotic 
(copular, etc.) algebras are not necessarily special train algebras [7, p. 6, 
footnote]. 

We introduce a concept of genetic algebra which is intermediate betweeli 
(commutative) train algebra and special train algebra. The definition is 
more satisfactory than that of special train algebra on two counts: the struc- 
ture of the algebra is not postulated, and the duplicate of a genetic algebra 
is a genetic algebra. It follows from this latter fact that our genetic algebras 
include, not only the fundamental symmetrical gametic algebras, but also 
the zygotic (copular, etc.) algebras obtained from them by duplication. On 
the other hand, this new concept is restrictive enough for us to deduce a 
transparent structure theory for genetic algebras. 

It is only fair perhaps to caution the reader that our interest in these 
algebras is entirely in the algebraic formalism, and that we can give no 
indication beyond Etherington's own remarks in [5] and [8] of their possible 
contribution to the study of genetics. Also we use the name "genetic 
algebra " with some misgivings. Our results are applicable to the algebras 
arising in genetics where inheritance is symmetrical in the sexes, and we 
abbreviate " genetic algebra of symmetrical inheritance ?' to " genetic algebra." 

1. Preliminaries. The principal tool of our investigation of genetic 
algebras is the trcansformation algebra [1, ? 2]. Let SC be a non-associative 

* Received December 5, 1947. 
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122 R. D. SCHAFER. 

algebra of order n over a field $. Then for a fixed element x in SC the 
correspondences 

a->ax aRx, a-xa aLx, for all a in X, 

are linear transformations on 'A called the right and left multiplications R, 
and Lx respectively. If 92 is a subset of the total matric algebra ($) of 
all linear transformations on X, the enveloping algebra of 9 is the algebra 
of all polynomials in the transformations in 9N with coefficients in $. The 
enveloping algebra of the set which consists of the identity I in ($) 
together with the right and left multiplications of 'C, is the transfor-mation 
algebra T(A) of A. Clearly any T in T(Vt) may be written in the form 

(1) T c aI + f((Rxl, Lxl, R2, . . ) in $, xi in W. 

If e is any linear subspace of SC, the enveloping algebra of the set of 
right and left multiplications of SC which correspond to elements in e is 
denoted by S3. That is, T in V* has the form (1) with a = 0, xi in 93. 
(It should be noted that the transformationis in V are linear transformations 
o0n V, although for compactness the notation does not indicate this.) 

A homomorphism H of an algebra Vt over $ into an algebra CN over 
is a linear mapping of W into (E such that 

(2) (ax)H aHoxH for all a,x in W, 

where o denotes multiplication in (S. The kernel of II is the set e of all b 
in Vt such that bH = 0; .e is an ideal of 'A. The homomorphism is onto (E 
in case, for any c in (S, there exists some a in Vt such that c = aH. The 
relationships between homomorphisms, ideals, and difference algebras are well- 
known. In case the homomorphism in question is from W into the base field 
$, we use a functional notation: 

(3) w: X-o (X), x in Vt, o(x) in $, 

and (2) becomes 

(4) Co(ax) =o (a)o (x), for all a, x in W. 

We call an algebra W nilpotent in case there exists an integer t such 
that every product of t elements in A, no matter how associated, is zero. 
This is what Albert has recently called strongly nilpotent [2, p. 528; 3, p. 549]. 
He has defined a nilpotent algebra in the following way: every sequence 
a,, . . ., ak of k elements of Vt defines a special product a(k) of order k by 
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STRUCTURE OF GENETIC ALGEBRAS. 123 

either of the formulas a( - a(-1)ai or a -t) aia(1-') for i > 1; if all special 
products of order k are zero and some special product of order k - 1 is not 
zero, Albert calls SC nilpotent of index Ia. Certainly a strongly nilpotent 
algebra is nilpotent by these definitions. However, an observation of 
Etherington [7, p. 2] shows the equivalence of the two notions: for if every 
special product of index k in SC is zero, then every product of t = 2-1 
elements in SC, no matter how associated, is zero. Thus the concept of a 
strongly nilpotent algebra is redundant. 

A necessary and sufficient condition that an ideal e3 of a non-associative 
algebra SC be nilpotent is that the associative algebra W be nilpotent [2, 
Lemma 5]. 

If a non-associative algebra SC is homomorphic to a semi-simple algebra 
(direct sum of simple algebras), there is an ideal 't of X, called the radical 
of SC, such that SC -Pc is semi-simple and Rt is contained in every ideal e 
of SC such that A -e is semi-simple. It is an immediate consequence of 
[2, Theorem 6] that any nilpotent ideal of SC is contained in the radical of SC. 

2. Baric algebras. A non-associative algebra SC of order n over a field 
$ is called baric in case it has a non-trivial representation of degree one- 
that is, in case there is a homQmorphism (3) of SC into $ such that for some 
xO in 'A we have ) (xo) /- 0. It follows that w is a homomorphism of W 
onto $ since, for any a in $, we have o(axo/w(xo)) =a. We call w (x) the 
weight of x, and o the weight function of SC. 

We denote the kernel of the homomorphism w by 9Z. Then a necessary 
and sufficient condition that a non-associative algebra 'A be a baric algebra 
is that SC contain an ideal 9Z such that 

(5) W f- 9 

Thus any non-associative algebra W of order n - 1 over $ gives rise to a 
baric algebra SC of order n over $ if we adjoin an element u to 9Z in any 
fashion such that the elements u2 - u, uz, and zu are in 9Z for all z in 9Z 
(a trivial construction). 

In a gametic algebra 'A we take a basis ul, u2 *, un denoting the 
gametic types involved in some genetical situation of symmetrical inheritance 
[5, ? 6]. If 7ijk is the probability that an arbitrary gamete produced by an 
individual of zygotic type uiuj (= ujui) be of gametic type uk, we have 

(6) UiUj k7tjkUk (iji 1, . n) 
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124 R. D. SCHAFER. 

subject to the conditions 

Etherington points out that equations (6) and (7)-not assuming com- 
mutativity-imply that W is a baric algebra with weight function 

(8) o: x = Yui -@ (x) Yqe, ti in ~. 

The converse is also true: given any baric algebra SC there is a basis 
U1, U2< . , U2n of A whose multiplication table (6) is subject to the conditions 
(7). Also the defining homomorphism < has the form (8). For let v2, * * , V' 

be a basis of the ideal 91 of W. There exists an element ut in X, but not in 9Z, 
of weight 1, so that W has basis u, v2,* , v.. Write ut1 tu, ut u + vt 

(=2, * *,n). Then 

(9) 6(tu,) -1 , **7n). 

Moreover, W has the basis U1, u2,. , u. satisfying (6) for some yijk in . 

Now (4) and (9) imply that 1 = o(tut)o(utj) = o(utuj) = Xkytjkw(ik) 

= k -jk so that (7) holds. Also (8) follows from (9). 
If W is a baric algebra, then T ( ) is also a baric algebra. For if Vl 

has weight function w, a weight function 0 for T (s) is defined by 

(10) 0(T) =(ouT), 

where it is any element of weight 1 in W%. That 0 is well-defined by (10) 
is clear since, if T in T (A) is written in the form (1), we have equivalently 

(1-1) 0 (T) ==a + f (,w(xi) . @(xj), IW(X2), * * *).- 

Then 0 is linear by (10), a homomorphism by (11), and non-trivial since 
0 (I) =1. 

3. Genetic algebras. Etherington has investigated the non-commutative 
aspects of some of the concepts he has introduced. However, since any algebra 
encountered in genetics may be taken to be commutative [8, p. 26], we shall 
assume the commutative law in all that follows. 

In a commutative algebra SC we have L. = Rx for all x, so that we may 
write T in T(2() in the form 

(12) T=cI+f(RS1,Rx2,- * , ) a in W, xt in W. 

The characteristic function X1- T of T in (12) has coefficients which are 
polynomials in a and the coordinates of the xt, polynomials which depend 
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STRUCTURE OF GENETIC ALGEBRAS. 125 

both on the function f and on elements of $ which are independent of T 
(that is, scalars completely determined by SC). 

We call a commutative baric algebra SC over $ with weight function . 
a genetic algebra in case the coefficients of the characteristic function of T 
in (12), insofar as they depend on the xi, depend only on the weights (xi). 
That is, these coefficients are polynomials in a and the o(xi) having coeffi- 
cients which involve certain elements of $ determined by SC in combinations 
determined by f. (Note: the fact that for a given T in T(Af) the expression 
(12) is not unique has no bearing on our definition.) 

This definition is an extension of Etherington's definition of train algebra 
[5, ? 4]. Define the right powers Xk of x in SC by xl = x and 

(13) xk xlR k-1 (kc 2, 3, . 

(Since we assume SC commutative, right powers and similarly defined left 
powers are equal.) Then a commutative baric algebra SC over ! with weight 
function o is called a train algebra in case the coefficients of the (right) rank 
equation [4, ? 19], insofar as they depend on x, depend only on o(x). That 
is, there exist elements ,,* . ., p-l in l such that 

(14) Xr + 1,3(X)Xr-1 + * *? + 3r1 [Q) (X) ]rlX - 0 

for all x in SC, where xk is the right power (13). 

THEOREM 1. A genetic algebra SC over l is a train algebra. 

Let T = Rx in (12), and write w(x)= . Then, since the coefficients 
of -the characteristic function 

+(x) = I - R$ 

of Rx are homogeneous polynomials in the coordinates of x, we have, by the 
definition of a genetic algebra, 

(15) c (X) = Xn +-1 y,Xn-, + *..+ /n n 

for some yi, , yn in l. Now (15) factors in a finite extension S! of $ as 

(16) +(X) = (X- -1) (X-A2) . . (X- Ant), in R. 
If 
(17) xr + ?,Ar-l? + * + . r-i 

is the rank function of SC, /j a homogeneous polynomial of degree j in the 
coordinates of x, then (17) divides XA+(X) [4, ? 19]. The Xi in (16) may 
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126 R. D. SCHAFER. 

then be ordered so that (17) equals X(X - Xi4) . - . Xr_i ), from which 
it follows that 

j ( 1 ) jtjEA1 * * * A.1,j 1,2 ,r 

The rank equation is (14) with 

pi (_ 1) jylAz1 * x, ,2,***,r 1 

in $; SC is a train algebra. 

In a non-associative algebra in which powers of a single element are 
not necessarily associative, the concept of a nilpotent element may be defined 
variously. Here we shall call an element z nilpotent in case there exists an 
integer lc for which the right power Zk - 0. In a train algebra SC the 
kernel 9Z of the weight function 0) theii has an easy characterization: 9z con- 
sists of the nilpotent element of W. For zk - 0 implies o(z'k) - [to(Z) ]k = 0, 
w (z) = 0; conversely w (z) = 0 implies Zr = 0 by ( 14). It follows from 
Theorem 1 that the same characterization of 9Z holds for genetic algebras. 

We construct an example of a train algebra which is not a genetic algebra 
as follows: let $ have characteristic two.1 Then the square of any element 
z in the commutative algebra 9Z = (vi, v2, v3) with multiplication table 

V1V2 = V3, V2V3Vl V3V1== V2, V2 =- 0 (i l 2, 3) 

is zero. However, 9X is not a nilpotent algebra, since 9 = 9X2 (= g9J). 
Let SC be the algebra obtained by adjoining a unity element 1 to 9X. Then x 
in SC has the form x - t1 + z, and W is a train algebra since x -> e is a weight 
function for SC, while Z2 = (X - t1) 2 = X2 + 421 = 0 implies x3 + 42X - 0. 
Since 9Z is not nilpotent, it follows from Theorem 4 below that SC is not a 
genetic algebra. This example also shows that a structure theory as elemen- 
tary as that in 5 below is not possible for train algebras. 

A commutative baric algebra SC with weight function o is called a special 
train algebra in case 

(a) the kernel X of o is nilpotent, and 
(b) the subalgebras k Of of defined indLictively by X1 = , gk 9 1- 

for =2, 3, 3 , are ideals of SC. 

1 If we knew an example, over a more or less arbitrary field, of a commutative 
non-nilpotent algebra 9Z, all of whose elements are nilpotent, we could give a more 
satisfying example of a train algebra which is not a genetic algebra by adjoining 1 to 
9Z. There are many examples in the literature of non-commutative algebras 9z with 
these properties but, although it seems possible that commutative examples exist, 
we have not been able to construct one. 
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STRUCTURE OF GENETIC ALGEBRAS. 127 

THEOREM 2. A special train algebra ' over W is a genetic algebra. 

Etherington has shown in [7, ? 4] that over a finite extensioin A of i 
there exists a basis of Wa, together with scalars \1 =1, X2y , Xn in 1A, 
such that the matrix of R2, for x in f has the form 

L 0 X2 . . ., 

Then the characteristic function (15) of Rx has the form (16) with Xi as 
in (18). Hence 

(19) (- I) t.t xA1* it (t ,p 2, ** n), 

and the yt in a are dependent, not on x, but only on the algebra SC. From 
(18) we obtain 

t(tlAln ~ ...1 ** 

f(R~~1, ~X2~~ *) = *.) f(t1X2, 42x2, * *) ** 

f ((R . f(X. * * *) 

where ek w(xk). Then T in (12) has characteristic equation 

XI-1 T (X- a)I- f (RXJ RX2,- * ) I 

-= [(A -a) r /1] [(X a)--q212 * * (A - a) -'n] ? 

where we have written 

(20) -ti~ (&Xip' &2i . . . (n = In 2, . ** n). 
Then 

XI - T|-(X a)n+ 1(X a) n-1+ . ./Ajnp 

where (- 1) is the elementary symmetric function of degree s in the ni. 
But then by (20) the j, (s = 1, 2, * , n) are polynomials in el, e2p * * * , 
with coefficients which are symmetric functions of the Xi. These coefficients 
are expressible in terms of the elementary symmetric functions (19) of the Ai, 
and therefore are not dependent on the xi. Hence SC is a genetic algebra. 

The copular algebra of simple mendelian inheritance (6 below) is an 
example of a genetic algebra which is not a special train algebra. 
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1.28 R. D. SCHAFER. 

4. Duplicate of a commutative algebra. Let W be a commutative 
algebra of order n over ~, and let u1, u2, * *, u,, be a basis of SC with multi- 
plication table (6). The duplicate SC' of SC is defined as the commutative 
algebra of order I n(n + 1) over H with basal elements vij (i ? j; i, j 1, 2, 

n) satisfying 

(21) VIjVrs = :4tyijkyrstV1#t (i < j' r < s; i, j, r, s, k, t = 1, , n) 

where we identify Vtk = Vkt for t > 7k. That is, element of W behave like 
quadratic forms in SC. The definition of W is independent of the basis chosen 
for W since W -- W1 implies W' -1' [9, Theorem IV]. 

The process of duplication is important in genetics because we obtain 
from any gametic algebra W a corresponding zygotic algebra W whose basis 
consists of the zygotic types u,uj (= ujui) obtained from the gametic types 
u1, u2, - * *, un in SC. Multiplication in the zygotic algebra SC' is carried out 
as though it were being performed in W according to the multiplication table 
(6). Writing vij for uiuj (i < j) we obtain (21), where the coefficient of 
Vkt is the probability that an individual of zygotic type uiuj mating with one 
of type urus will produce an individual of zygotic type ukut. If W is the 
weight function (8) of the gametic algebra SC, then 

(': a_Yijaijvij >W'(a) cjatj, cj in , 

is a weight function for the zygotic algebra S; S is a baric algebra. Genetical 
calculations involving the first filial generation may be performed in W', 
those involving the second filial generation in the copular algebra SC" (the 
duplicate of '), etc. 

We return to the general notion of a duplicate algebra as defined by (21). 
There is a homomorphism H of W into W defined by 

(22) H: vqj - v Hj = quuj= >k4YijkUkp (i j j . . . in). 

Actually H is a homomorphism of SC' onto the ideal f2 (= ff) of SC, since 
the uiuj span %2. We denote the kernel of H by i. It is easy to see that 

(23) IZW/ O 

[9, Theorem II (ii)]; that is, ?) consists of absolute divisors of zero. 
Let a be an element of W. We denote the corresponding right multi- 

plication of SC' by R*a,. Then any element T* of T(WC) has the form 

(24) T* al*+ f (R*aj, R*a2 . ), a in ~, ai in SC', 

where 1* is the identity on W. 
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STRUCTURE OF GENETIC ALGBBRAS. 129 

LEMMA. Let a commutative algebra f of order n over a have duplicate 
s', and T* in T(%') have the form (24). Then the characteristic function 
of T* is 
(25) | -* T.| (X a):Ln (n-1) I1 - T| 

where T in T((W) has the form (12) with xi = aiH, and H is the homno- 
morphism (22) of ' into W. 

Let m be the order over a of the kernel i of H. Then W' i + Z 
for a linear subspace Z of W having order p -n(n + 1) - m over 
It follows from (23) that, corresponding to this way of writing s', the right 
multiplication R1*a has matrix 

R*a( ( N), a in W', 

where Ma and Na are p X m and p X p matrices respectively. Since 
-I_ - _f2 under the natural correspondence determined by H, we have 

Na = R0aH, the right multiplication of f2 corresponding to aH in s2. Then 
R*a has matrix 

(26) R*a(-= ( ), x = aH in f2. 

Now SC = 2 + ?$ for a linear subspace ?$ of W having order n - p over 
Corresponding to this way of writing SC, the matrix of R. for x in f2 C W is 

(27) R RO ), x in s2, 

since f2 is an ideal of W. It follows from (26) and (27) that 

/0 0 
(28) f(R*al, R*a2, ) = * ) ) xi = aiH, 

and 

(29) f(Ra,1,RX32,R = (Rf Ox(I * *) 0) xi in %2. 

Then, denoting by Ip, the (p-rowed) identity on %2 and X, equations (28) 
and (29) implythat I l-* T* = (X-a) m I (A a)lp -f(Rx,1,R%X2, * )I 

(A a)m-(n-p) _l- T |, for T* in (24) and T in (12) with x$ a,H. 
Equation (25) follows immediately since m - n + p n+ -ffn(n -1 1) 

-n(n-1). 

We use this lemma in the proof of 

9 
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130 R. D. SCHAFER. 

TH1EOREM 3. The duplicate ' of a genetic algebra W over a is itself 
.a genetic algebra. 

By definition W is commutative. If W is the weight function of SC, then 
a weight function o' of W is defined by 

(30) W': a --(a) = (aH), a in SW', aH in SC, 

where H is the homomorphism (22) of ' into W. It follows from (25) and 
the fact that W is a genetic algebra that the characteristic function of T* in 
(24) has coefficients which, insofar as they depend on the aw, depend only 
on the wo(xi) =w)(a,H) =w/(ai) ; ' is a genetic algebra. 

The advantage of the concept of genetic algebra over special train algebra 
lies in Theorem 3. The most elementary algebra of genetics, the gamnetic 
algebra of simple mendelian inheritance (6 below), is a special train algebra 
(therefore a genetic algebra by Theorem 2). Hence by Theorem 3 all algebras 
obtained from it by duplication are also genetic algebras. However, the 
copular algebra of simple mendelian inheritance, obtained by duplicating 
the gametic algebra twice, is not a special train algebra. 

5. Structure of genetic algebras. It follows from (5) that the radical 
of any baric algebra is contained in the kernel 9t of the weight function e. 
We shall show that for a genetic algebra W the radical is X, by showing that 
X, which we already know consists of the nilpotent elements of W, is actually 
nilpotent. 

THEOREM 4. Let 9Z be the kernel of the weight function o of a genetic 
algebra W over ~. Then 9Z is the radical of X, and is nilpotent. 

Let T in T(A) have the form (12), and write w(xi) =- . Then the 
characteristic function 

AlI T | >n +.p,Xln-1 + ***+ tGn 

of T has coefficients qj which are polynomials in p, p, 42p . . ., with constant 
terms gjo , 0. For let a O=0 and x O0 (i 1, 2, . . ) in (12); then 
T 0, I AlI An An + ,OXn-i + * * * + qono, or 'jo ~O for j 1, 2, ... *, n. 
It follows that An is the characteristic function of any T in T(W) which may 
be written in the form (12) with 

(31) a c = (xi) O, O =1, 2, 

In this case Tn 0, T is nilpotent. Now let T be in the enveloping algebra 
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STRUCTURE OF GENETIC ALGEBRAS. 131 

9Z* of the right multiplications corresponding to elements of 9X. Then (31) 
is satisfied, T is nilpotent. Since 9Z* is an associative algebra consisting of 
nilpotent elements, 9Z* is nilpotent. Thus 9X is a nilpotent ideal of X, and 
is contained in the radical 9 of W. On the other hand, (5) implies that 9 
contains R, or 9 9X. 

The classical elements of a structure theory for a linear algebra W are 

(i) the nature of the radical 9X, and 
(ii) the nature of the simple components of the semi-simple algebra 

For genetic algebras, (i) is answered by Theorem 4. Question (ii) is trivial 
by virtue of (5). 

One may also ask whether or not the analogue of the so-called Wedderburn 
Principal Theorem holds: does W contain a subalgebra ( _ W X9, so that 
a= 2 + XJ ? It is easy to see from (5) that this question is equivalent to 
the following one: does W contain an idempotent element e? One may 
readily construct an example of a genetic algebra without an idempotent, 
so the answer in general- is negative. 

However, the existence of an idempotent is significant genetically, since 
it represents a population in equilibrium for random mating [6, p. 138]. 
Etherington gives conditions for the existence of an idempotent in a commu- 
tative baric algebra [6, Theorem VI]. Clearly a genetic algebra (or even a 
train algebra) contains an idempotent e if and only if there is an associative 
subalgebra e of W which is not contailled in 9X. For e generates such an 
algebra e, while the converse follows from the fact that any non-nilpotent 
associative algebra (E contains an idempotent. 

6. Simple mendelian inheritance. Let W have characteristic not two. 
The gametic algebra (M of simple mendelian inheritance is the commutative 
algebra (S (ul, u2) of order 2 over l with gametic multiplication table 

(32) u=2 u1, u1u2 u1 + tU2, U22 u2. 

An easy change of basis gives M = (u, z) with 

(33) u2 =u Uz =jz z2 0. 

Writing x = du + Xz, we have weight function : x > (x) t; then 
= (Z), 9Z2 = 0, S is a special train algebra. The transformation algebra 

T((S) has order 3 over P:, and any element T of T((5) may be written in the 
form 
(34) T I+2R , a in ~, x mu+'qz in S. 
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The characteristic function of T in (34) is 

(35) A2 (2 + 34)A + (a + )( + 24) - [A -(+ + 2+)] [A - ++). 

The zygotic algebra 3 of simple mendelian inheritance is obtained from 
(S by duplication. For purposes of computation in genetics one would want 
the multiplication table obtained by duplicating (32). However, the structure 
of 3 ( M' is seen more easily when the multiplication table (33) is duplicated. 
Write a uu, b uz, c zz. Then 3= (a, b, c) with 

(36) a2 a, ab -b b2 Ic ac bc== C2 = o. 

Writing x da + 'qb + Cc, we have the weight function : x -> o (x) = 

The kernel of w is 9X (b, c). Then 9Z2 (C), 9Z3 = 0, 3 is a special 
train algebra. The transformation algebra T (B3) has order 6 over H and 
any element T of TQ() may be written in the form 

(37) T = al + 2R1 + 4RX2R1X3, xi a +r>b, ( (xi) = . 

The characteristic function of T in (37) is 

(38) [A -] [A- (a + 21 + 44243)] [A (o + i + L243)1. 

Duplication of 3 gives the copular algebra ( of simple mendelian 
inheritance. As before we omit the multiplication table (important from 
the point of view of genetics, but not structurally) which is obtained by 
duplicating (32) twice. Instead we write v = aa, pi = ab, P2 = bb, P3 = ac, 
p4 bc, p5= cc, for a, b, c in (36). Then (ES (v, pi, ,p5) with 

39) v2 V, Vp 2pi, Vp2 = P3' Pi2 =P2, PlP2 8P4 

(9) p22 1tG P5 vpj pipj pi0 (i 1,. .5; j 3 4, 5). 

Writing x ~v + :rjpj, we have (o(x) =. The kernel of Z is X (pL, 

* p5), and 9Z2 
= 

(P2, P4, p5), 9Z3 = (p4, p5), n94 
= 0. Now G is not a 

special train algebra since 6X2 contains Vp2 4P3, which is not in 92; 92 iS 

not an ideal of (. That ( is a genetic algebra is guaranteed by Theorem 3. 

7. Jordan algebras. A commutative algebra W of order n over P: is 
called a Jordan algebra in case 

x2(xy) =x(X2y) for all x,y in W. 

Let a have characteristic not two; any linear subspace 9 of (H) which 
is closed with respect to " quasi-multiplication" 
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(40) xy = 1(x +y x) y , x,y in 9a , 

where x y denotes the associative multiplication of transformations in 9, 
is a Jordan algebra of linear transformations of order n ? m2 over 
[3, p. 546]. 

The gametic algebra (M of simple mendelian inheritance is the case 
n 2 of the genetic algebra $5n = (u, z2,, z*) with multiplication table 

(41) u2 u, uzj tZj, zizj=0 (i,j 2, *, n). 

In [6, ? 6] Etherington has shown that any train algebra of rank 2 and order 
n over H of characteristic not two is equivalent to 05., and also has indicated 
that these algebras are Jordan algebras [6, p. 138, footnote]. Actually they 
are Jordan algebras of linear transformations. For let eij (i, j 1, , n) 
be the usual matric basis of (a) with matrix multiplication 

(42) eij1 ekl jke I (Kronecker delta), 

and let 92 (e1l, e12, . . ., e1n). By (40) 9 is a Jordan algebra of linear 
transformations with multiplication ele1l - (8& e_j + Sle1) or 

(43) ell2 ell, elleli = 2eli, eliel1 0 (i,j=2, *,n). 

By (41) and (43) the correspondence u -> e1l, zj -> e1l (i 2,* , n) is an 
equivalence between (. and W. 

The zygotic algebra 3 of simple mendelian inheritance is also a Jordan 
algebra of linear transformations. For let 9 be the subspace of (H) with 
basal elements a = e22, b = e12 + e23, c = 4e13. Defining multiplication ill 
9 by (40) and (42), we obtain the multiplication table (36); 9U is a Jordan 
algebra of linear transformations and is equivalent to 3. 

Inasmuch as powers of a single element are associative in a Jordan 
algebra over a of characteristic not two [3, ? 5], the copular algebra ( of 
simple mendelian inheritance is not a Jordan algebra. For we see from (39) 
that the right power pJ4 = 0, while pl2pi2 = 2-8p5 =z 0. 

These considerations lead us to an analysis of those genetic algebras W 
over a field W of characteristic not two which are at the same time Jordan 
algebras. Let u be an element of weight 1 in W. Then, by the associativity 
of powers in X, u generates an associative subalgebra 'e which is not contained 
in 9X; there is an idempotent e in W. 

Albert has shown in [3] that the only possible characteristic roots of Re 
are 0, 2 1, so that the equation 
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(44) xe =/x, 1B in , 

has solutions onily for 1 - 0, 1,1. Writing We (,8) for the set of all x in { 
satisfying (44), one obtains W as the supplementary sum 

(45) a We(1) + We(2) + we(0). 

Let t6 be the dimension of the space We(/3) over :. Then t1 ? 1 and 
t1 + ti + to =- n. Corresponding to a basis of W in the form (45), we have 
the matrix of Re in the diagonal form 

(46) Re diag{ 11, II, 0} 

where I: is the t,-rowed identity matrix. 

Since T(W) is a baric algebra with weight function 0 defined by (10), or 

(47) 6 (T) = a' + f ( l, e2, . . . )) i= t- (xi) , 

for T in (12), we know that one characteristic root of T is 6(T). For 
+(A)-=| AI -T implies that +(T)=0 and 0[p(T)] =I [O(T)]==O, 
0(T) is a root of +(A) = 0. However, for Jordan algebras we can obtain the 
following stronger result. 

THEOREM 5. Let W have characteristic not two, and W be a genetic 
algebra which is a Jordan algebra over ?. Then W contains an idempotent e, 
and the distinct characteristic roots of T in T(W) in (12) are at most three: 

O (T), + f ( lel 42, . . .) 

where 4e o(xi), and 0 is the weight function (10) of T((W). The multi- 
plicities of these roots are the orders over a of We(?), %,e(1), W6e(t) 
respectively. 

For it follows from (46) that 

(48) f (RE,le, Rtgc . . . diag f(, f 2 * *j )I2 , f( el, t2n )i 

Then, since W is a genetic algebra and (xi) 4j o(e,e), we have 

|AI - T (A )I f(R 1,RX 2. . . ( a)I f(Rt1e, R22ey )| 

Then (48) and (47) imply that the characteristic function of T is 

(49) [A theo]re ol [A o0w(T)s[A {a+ fs(.11 U2* 

The theorem follows. 
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In the examples we have worked out for simple mendelian inheritance, 
(35) and (38) illustrate the characteristic function (49). 

TEE INSTITUTE FOR ADVANCED STUDY. 
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